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A class of one-dimensional continuum fluid models is defined in which classical 
particles interact through translationally invariant, strongly tempered many- 
body potentials meeting conditions sufficient to ensure a proper thermodynamic 
limit. However, an exact analysis demonstrates that for certain ranges of 
parameter values the pressure versus density isotherms are discontinuous. The 
basic models also entail discontinuous temperature versus configurational en- 
tropy isobars but extended models are described which exhibit either type of 
anomaly alone and various unobserved but thermodynamically allowed, anoma- 
lous types of first-order transitions. 

KEY WORDS: Pressure discontinuity; phase transitions; thermodynamic 
anomalies; one dimensional fluids. 

1. I N T R O D U C T I O N  

M a n y  t h e r m o d y n a m i c  systems, such as a gas which condenses  into a l iquid, 
exhibi t  a d i scon t inu i ty  in the density,  0, as a funct ion  of pressure,  p ,  a t  
cons tan t  tempera ture ,  T, i.e., in a (0, P) isotherm.  Yet,  a l though it is 
pe rmi t t ed  by  the rmodynamics ,  no one has  exper imenta l ly  observed  the 
oppos i te  s i tuat ion,  namely ,  a d i scont inu i ty  in an  i so therm of pressure  versus 
density.  Even the most  r igid mater ia l s  have some nonvan ish ing  i so thermal  
compressibi l i ty ,  O - I O p / O p ) T ,  under  all condi t ions .  Proofs  fo rb idd ing  a 
d i scon t inu i ty  in the pressure  have been  es tabl i shed  by  var ious  authors ,  (1 6) 
in pa r t i cu la r  by  Grif f i ths  and  Ruelle,  (5) bu t  all d e m a n d  more  restrictive 
condi t ions  on the potent ia l s  of in terac t ion  than  requi red  mere ly  for the 
existence of a proper ,  we l l -behaved  t h e r m o d y n a m i c  limit. (7'8) 

A n  interest ing quest ion arises: "Is  it poss ible  to cons t ruc t  models  with 
wel l -def ined Hami l ton ians ,  however  unrealist ic ,  which exhibi t  a pressure  

I Baker Laboratory, Corneil University, Ithaca, New York 14853. 

413 
0022-4715/83/0800-0413503.00/0 �9 1983 Plenum Publishing Corporation 



414 Milton and Fisher 

discontinuity?" The answer is "Yes." Indeed, a one-dimensional lattice gas 
model displaying such a discontinuity was constructed some years ago (9) 
and its significance in a general statistical mechanical context has been 
discussed by Israel (1~ and Wightman. (12~ In this lattice model the discon- 
tinuity arises, physically, from a "condensation" of the low-density gas into 
a rigid "crystal" of fixed density, O•, which is then crushed to higher 
densities only when the pressure is raised by a sufficiently large further 
increment. The fixed density, P6, in this model is tied directly to the lattice 
spacing a 0 via P~ = 1/2a0; it might thus be felt that the presence of an 
underlying periodic lattice structure plays a crucial role in the existence of a 
pressure discontinuity. In addressing this issue in the discussion of the 
model it was suggested (v~ that it should be possible to construct one- 
dimensional continuum fluid models which would, nevertheless, display 
similar pressure discontinuities. In this paper we verify this conjecture by 
exhibiting and analyzing such continuum models. Our results demonstrate 
that the existence of a pressure discontinuity is not dependent on any 
spatial periodicity in the model. 

Our one-dimensional, classical, continuum models are introduced in 
the following section. They utilize the idea of "cluster interactions" devised 
originally in discussing the droplet picture of condensation (13~ and devel- 
oped later to exhibit a variety of more-or-less orthodox phase transitions 
in one-dimensional continuum models (~4'~5) and to establish a pressure 
discontinuity in a lattice gas. (9) The phase transitions it/ these models 
arise through the presence and character of many-body forces, qbk(r ~, 
r 2 . . . . .  rk), of indefinitely high order in k. However, the overall forces are 
of short range in the sense that the total potential energy, U N, of a system 
with N particles partitioned into two disjoint intervals does not depend on 
the distance of separation, R, between the intervals provided R exceeds a 
finite distance, R 0' i.e., a "strong tempering" condition (7'8) is satisfied. 
Nevertheless the many-body forces may induce effective interactions of 
long range within a suitably defined cluster of particles and these can lead 
to phase transitions if the "surface tension" becomes unbounded. 

In Section 3 we check that the new models satisfy conditions sufficient 
to ensure the existence of a proper thermodynamic limit. The strong 
tempering property is invoked here. The analysis of the simple basic model 
is presented in Section 4. Appropriate generating functions provide a 
complete elucidation of the thermodynamic properties. Section 5 discusses 
typical phase diagrams realized by the special subclass of logarithmic 
models. The nature of the corresponding pressure versus density isotherms 
where they display discontinuities is explained in Section 6. Finally, a 
variety of extended models are described briefly in Section 7. These, 
together with the basic model, provide examples of systems in which 
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anomalous isobars with discontinuities in temperature, T, versus configura- 
tional entropy, S, are combined in various ways with discontinuous (p, p) 
isotherms and with more orthodox first-order phase transitions with discon- 
tinuities in (p, p) isotherms and (S, T) isobars. 

2. N E W  T Y P E S  OF C L U S T E R  I N T E R A C T I O N  M O D E L S  

Consider a one-dimensional system composed of identical, classical 
particles. A cluster refers to a group of adjacent particles satisfying certain 
conditions, for example that the nearest-neighbor spacing lies between 
specified upper and lower limits, say c and c'. By introducing appropriate 
many-body potentials which energetically favor clusters of very large size, 
phase transitions may occur, even though the system is one dimen- 
sional. (~3-15) Roughly speaking, "condensation" corresponds to the forma- 
tion of clusters of macroscopic size. A pressure discontinuity at condensa- 
tion may be anticipated if the clusters are defined in such a way that as 
their size increases, the average density of particles within any cluster tends 
to a fixed limit. 

In the one-dimensional lattice gas models displaying pressure disconti- 
nuities (9) clusters were defined to be sequences of particles with a nearest- 
neighbor spacing exactly twice the lattice spacing, a 0. Thus each cluster 
was, in essence, a rigid crystallite of fixed density, 0 = 1 /2a  o. A natural 
generalization of this model to the continuum case would be to define a 
cluster to be a set of particles such that the nearest-neighbor spacing falls 
between specified upper and lower limits, c l and c~, which converge as the 
cluster size, l, increases. However, we have not been successful with this 
approach since the large clusters, which are almost rigid crystallites, occupy 
too small a region in phase space for condensation to occur in the 
thermodynamic limit, no matter how energetically favorable are the cluster- 
ing energies. To obtain condensation in the continuum case it proves 
necessary to allow particles in large clusters to have a greater degree of 
internal freedom. 

In the previous one-dimensional continuum cluster interaction mod- 
els (13-~5) a set of particles was defined as a cluster only according to 
whether the nearest-neighbor separations were all between fixed upper and 
lower limits, e and c'. This definition simplifies the analysis, and phase 
transitions can occur, but, as mentioned, it seems unsuitable for the 
construction of a model with a pressure discontinuity. Hence we introduce 
here a new class of one-dimensional cluster interaction models. In these 
models, the identification of a set of particles as a cluster depends also on 
the average density of particles in the set. To construct a continuum model 
with a pressure discontinuity it would be natural to specify both upper and 
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densLty too Low: 
no ctusters 4 -  c l u s t e r  3 -  c tus ter  

f, f2 f, f 4 f ,  r 

Fig. 1. A configuration of particles in a one-dimensional system showing "flags," f~, 
f2 . . . . .  fs, and clusters. The lower clustering distance, c', which determines which adjacent 
pairs are flags, is indicated. 

lower limits on the density of particles in a cluster. As we shall see, 
however, it is sufficient to set only a lower limit. 

To describe the models more precisely let the particles be located on 
the real line, and suppose they interact with a hard core pair potential, 

rp ( r )=  + ~  for r <  a 

= 0  for r > a  (2.1) 

where r is the interparticle distance. Let us call the open interval between 
each pair of adjacent particles separated by less than the lower  c lus ter ing  

d is tance  c '  > a a f l ag .  A set of n particles between two neighboring flags is 
then defined as a clus ter  provided the average density of particles in the set 
is not too low (see Fig. 1). Specifically the set is an n-cluster, if n ) 3 and 
the following condition is satisfied: 

C. Cluster Condition: 

l. ~< dra with m = n -  1 />2 (2.2) 

where l. is the distance between the pair of flags bounding the n-cluster 
while the upper limit d m takes the form 

dra = m ( b  + c ' )  + I) m > m e '  (2.3) 

in which b is a nonnegative length and 

v2~/m---~O as m ---) oo (2.4) 

Note the sign of the inequality in (2.3): the m e a n  spacing in a cluster 
exceeds  c'. The condition (2.4) is needed to obtain the asymptotic inequali- 
ties derived in the appendix, which, in turn, are crucial to the proof of a 
pressure discontinuity. In the most basic model both b and c' are taken as 
fixed parameters. 

Each (m + 1)-cluster is assigned an energy Era which can be written in 
the form 

Era = W m - ( m  + 1)/~ = W m - nff_, (2.5) 
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where E is positive and 

Wm/m-->O a s  m ---~ ~ (2.6) 

Thus - E can be regarded as the "bulk" contribution per particle while W m 

is the effective "surface" energy of the cluster. (13~ To ensure the existence of 
the thermodynamic limit (see below) we will require the cluster energies to 
be negative, i.e., 

E m < O  for all m / > 2  (2.7) 

This basic model can be described alternatively in terms of many-body 
potentials, without reference to clusters. (7~ In addition to the pair potential 
(2.1) we may define (m + 3)-body potentials (m = 2, 3 . . . .  ) which act only 
if m + 3 particles are adjacent with sequentially labeled coordinates r_ t, 
ro . . . . .  rm +1 satisfying the conditions 

(i) I r0 -  r_ll < c' ,  I r m + l -  rm] < C' 

(ii) I1) -- w > C' for j = 1,2 . . . .  , m  (2.8) 

(iii) Irm -- ro[ = lm+ 1 < d m 

These many-body potentials are then given explicitly by 

~m+3(r_l , r  o . . . .  , rm+l) = E m if (i), (ii), and (iii) hold 

= 0 otherwise (2.9) 

To establish the equivalence of this description of the model with the 
previous one, note that if conditions (i) and (ii) hold then the open in- 
tervals (r_l,r0) and (rm,rm+l) constitute neighboring flags. If, addition- 
ally, (iii) holds then the set of (m + 1) particles at r o , r  I . . . . .  r m forms an 
(m + 1)-cluster. The potentials ~ defined here are not quite the standard 
many-body potentials q)k(rl . . . . .  rk) defined without regard to linear se- 
quence(7'8~; however, these can easily be derived recursively from the 
energies of k-particle configurations. 

The precise nature of the many-body forces described here depends on 
the variation of E m and d m with m. Note that (iii), or equivalently the 
condition C, places a lower limit 

0~ = (b + c')  -1 (2 .10)  

on the average density of particles in a macroscopic cluster. To permit the 
formation of macroscopic clusters, i.e., "condensation," it proves necessary 
to choose E m and d m so that isolated flags entail a high cost in either 
entropy or energy when embedded in regions of mean density exceeding 
p~. This helps to prevent the break-up of large clusters into smaller ones. 
For a pressure discontinuity to occur, a sufficiently large value of the bulk 
energy parameter, E is also necessary so that an increase in the average 
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spacing of particles within a macroscopic cluster of mean density 06, which 
destroys the cluster, is strongly suppressed. We show (in Section 4) that the 
density of the system in the condensed phase then remains stuck at 0 = Oa 
as the pressure is decreased from high values, until the macroscopic clusters 
eventually break up at sufficiently low pressures. Thus the pressure exhibits 
a discontinuity at 0 = 0•. 

Many variations of the basic model, perhaps more realistic, can be 
conceived. For example, one could reverse all the inequalities in (2.8) or 
one could impose an additional condition such as 

(iv) I t ) - t ) _ l ] < c  for j = l , 2 , . . . , m  (2.11) 

where c > c'. In the latter case by choosing c < 2a, the unnatural require- 
ment that the m + 3 particles be adjacent is superfluous since (i) and (iv) 
ensure this. We have no doubt that a pressure discontinuity could still 
occur; however, we do not investigate such models here, since the basic 
model is much easier to analyze and suffices to demonstrate the existence 
of pressure discontinuities. 

3. EXISTENCE OF THE THERMODYNAMIC LIMIT 

An important question must be addressed: namely, does the basic 
model outlined in the previous section satisfy the conditions established by 
Ruelle (1,8) and Fisher, (9) which ensure the existence of the thermodynamic 
limit? To state these conditions let X denote a finite set of distinct points, 
rl, r 2 , . . . ,  ru(x) on the real line and let U(X) denote the total potential 
energy of N(X)  particles, one located at each point of the set X. For the 
existence of the thermodynamic limit it suffices (s'9) that the potentials 
satisfy the following conditions: 

T. Translational Invarianee: Namely, for all r r one has 

U(X + rT) = U(X)  for all X (3.1) 

A. Stability: There is a Q < oo such that 

U(X)  >> - O N ( X )  for all X (3.2) 

B*. Strong Tempering: For some R 0 < m one has 

U(X U X')  < U(X)  + U(X')  whenever R ( X , X ' )  ) R o (3.3) 

where 

R ( X , X ' )  = min{[r - r'[; r ~ X, r' ~ X'} (3.4) 
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denotes the shortest distance between a point in X and a point in X'. This 
strong-tempering condition can be replaced by less restrictive weak temper- 
ing conditions. (74) 

The potentials in the basic model are clearly translationally invariant 
since they depend only on the particle separations. Furthermore, each 
particle can belong to at most one cluster and, by virtue of (2.5) and (2.6), 
the energy per particle must be bounded below, by some constant Q. Thus 
the stability requirement A is satisfied. 

Unfortunately the strong tempering condition B* as stated (and even 
the weak tempering condition (7)) is not necessarily satisfied by the model. 
For instance X might be a sufficiently large set of particles which constitute 
a single cluster in which, for any R 0, there is a gap devoid of particles of 
width at least 2R 0 + c; the remaining particles in the cluster would have to 
be bunched together in order to compensate for the gap and meet the 
cluster condition C. The set X '  might then consist of an inserted pair of 
particles forming a flag located close to the middle of the gap. Then 
X U X'  could contain two, one, or even no clusters according to the 
average density of particles between the various flags. Whether (3.3) holds 
then depends in detail on the variation of E m and d m with m. 

It may well be possible to define E m and d m so that B* is always 
satisfied, while still permitting a pressure discontinuity to be established. 
However, we can avoid such complications by noting that the proofs of the 
existence of the thermodynamic limit use the strong tempering condition in 
a less restrictive form than stated in B*. In the proofs, (7'8) X and X'  are not 
arbitrary sets of particles but, rather, in the one-dimensional case are 
subsets of two disjoint intervals, say I" and F', respectively, where the 
distance between I" and ]7' is at least R 0. Thus the sets X and X'  cannot 
"intermix." Hence we need check only that the basic model satisfied the 
following condition: 

B t. Modi f ied Strong Temper ing  Condit ion:  For  some R o < o~ 

one has 

U ( X  U X ' )  < U ( X )  + U ( X ' )  whenever D ( X , X ' )  >1 R o (3.5) 

where, deleting the modulus bars entering the previous definition of R(X,  
X'), we take 

D ( X , X ' )  = min{r  - r'; r ~ X, r' E X'} (3.6) 

Now any cluster in X or X '  will still be a cluster in X U X'  provided 
D ( X , X ' )  > 0; which ensures that X and X'  do not intermix. There may, 
however, still be clusters in X U X'  not present in either X or X'. Neverthe- 
less since, by (2.7), the cluster energies are always negative, it follows that 
the modified strong tempering condition holds for any R 0 > a. 
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It would now be appropriate to show that the basic model violates 
conditions, which if satisfied, forbid a discontinuity in the pressure. Unfor- 
tunately the conditions of which we are aware (1-6J~ do not apply to 
continuum models with many-body forces. In the case of lattice gas models 
with many-body forces it was pointed out (9) that the condition used by 
Griffiths and Ruelle (5) to prove continuity of the pressure places a bound 
on the total energy of interaction of one particle with all others. In the 
cluster models, removing one particle can destroy a cluster of indefinitely 
large size, and since E,,, is unbounded, the total energy of interaction of one 
particle with all others is likewise unbounded. Therefore, although our 
present model is not a lattice gas, it also seems a reasonable candidate to 
have a discontinuity in the pressure. 

4. ANALYSIS OF THE BASIC MODEL 

Having checked the existence of a proper thermodynamic limit for our 
models, we proceed to examine the thermodynamics of the basic model. 
The analysis closely parallels that developed previously. (13-]5) 

It is helpful to introduce the notions of strings and endstrings as 
illustrated in Fig. 2. Consider particles in an interval A of length L on the 
real line. The n = 1,2 . . . .  particles lying between two neighboring flags 
are defined as an n-string. Similarly we denote the n = 0, 1,2 . . . .  particles 
between one end of A and the nearest flag (or the other end of A if no flags 
exist) as a n-endstring. With these definitions any configuration of particles 
on A can be partitioned uniquely into a set of strings and at most two 
endstrings. The length l, of a string or endstring is taken as the length of the 
interval between the neighboring flags, between the end of A and the 
nearest flag, or between both ends of A, as appropriate. Strings, but not 
endstrings, of length satisfying condition C will be clusters, provided n >/3. 

The grand canonical partition function, for the interval A of length L, 

2 -ends t r i . ng  

r 

A fl 

i - stri, ng 
/ 

/ 

4 -  s t r i ng  5 - str i .ng / 1 - endst r i .ng  

r 1 

f2 f3 f, B 
1" 

Fig. 2. An interval A, bounded by the end points A and B, containing a configuration of 
particles partitioned into "strings" and "endstrings." As in Fig. 1, the flags are labeled 

f l ,  f2 . . . . .  
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is given by 

N(z, fl, L)= u~__ozUf drl " " " f druexp[--flU((rl 

where 

B = 1/kBT 

is the inverse temperature and 

z = eB"/)t(T), X(T) = (h2/2~rmkBT) 1/2 

,rN})l (4.1) 

(4.2) 

(4.3) 

is the activity, )t(T) being the thermal de Broglie wavelength. A standard 
approach (~6) for solving one-dimensional models is to introduce the La- 
place transform 

qZ(z, fl, s)= fore-SLY(z, fi, L)dL (4.4) 

which, in our case, can be considered as a generating function for all 
possible sets of strings separated by flags of all possible sizes and bounded 
by all possible endgroups. Following the previous methods (14'15~ we intro- 
duce the following: 

(i) The flag-generating function: 

= foC'e-sr e -flq)(r) dr= (e--sa __ e-SC')/s (4.5) J(s) 

which accounts for all possible sizes of a single flag. 
(ii) The endstring-generating function 

G(Z,S) = ~ Z m+ 1[ g(s) ]m (4.6) 
m=0 

which accounts for all possible configurations of a single endstring, where 

K(s) = f~e-Sre -/~(r) dr= e-SC'ls (4.7) 

accounts for all possible interparticle spacings within the endstring. 
(iii) The string-generating function, H(z, fl, s). To obtain an explicit 

expression for H(z, fl, s) recall that strings fall into two categories: clusters, 
and strings that are not clusters. Hence we can write 

H(z, fl, s) = C(z, fl, s) + H'(z,s) (4.8) 

where C(z, fl, s) is the cluster-generating function and H'(z,s) is the 
generating function for strings which are not clusters. 

In an (m + 1)-cluster, all interparticle distances exceed the flag dis- 
tance c' and the cluster length, ln, satisfies the condition C. Thus the 
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cluster-generating function is 

= dr, ._ ,  drm_2" " " 
m = 2  me' ( m -  l)c '  ( m - 2 ) c '  

• f r2- C'dr L e -BErn (4.9) 
C ~ 

which accounts for all possible single clusters with their associated Boltz- 
mann factors. Upon integrating we obtain 

C(z, /3,s)= ~ zm+le-BEmI(s,m) (4.10) 
m =2 

where 

X(s ,m)  = dmdte-S'[l- m c ' ] m - ' / ( m  - 1)! (4.11) 
m c  t 

As might have been expected, I(s, m) is, in fact, the incomplete Laplace 
transform of the canonical partition function of a pure hard-core ("hard- 
rod") gas, (16) consisting of m - 1 particles located on an open interval of 
length l < d m, bounded by two other particles and with all interparticle 
spacings exceeding the flag distance c'. Such a configuration of particles, 
with adjacent flags, forms an (m + 1)-cluster. 

The distinction between the string-generating function H(z,/3,s) and 
the endstring-generating function G(z,s) must disappear when all the 
cluster energies E ,  are zero. Hence from (4.8) and (4.10) we deduce that 

n'(z,s) = G(z ,s ) -  ~ z"+'I(s,m) (4.12) 
m = 2  

and so, finally, we obtain 

m = 0  m = 2  

Since the total energy of the system is just the sum of energies of the 
individual strings, the integral in (4.1) can be expressed as the sum of 
iterated Laplace convolutions. Consequently the overall generating func- 
tion, 't'(z, /3, s), can be written as the sum of products of flag-, endgroup-, 
and group-generating functions as 

~t'(z,/3,s) = s- '  + s-2G(z,s) + s -Z[G(z , s ) ]  2 ~ [ J ( s ) ] k [ H ( z ,  /3,s)l k-I 
k = l  

(4.14) 

Here the first term accounts for all lengths of line with no strings, the 
second term for all single endstrings, and each successive term for all sets of 
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k - 1 strings located between two endstrings and separated by k flags. Any 
possible configuration of particles is included in one, and only one, of the 
terms in (4.14). 

The value of the abscissa of convergence, So(ti, z), of the Laplace 
transform (4.4) is directly related to the pressure, p, of the system in the 
thermodynamic limit, since from (4.4) and the definition of p in the grand 
canonical ensemble we have 

So( ti, z ) = lim L - q n ~ ( z ,  ti, L) = tip(T, Ix) (4.15) 
L - - - ~  ~ 

From (4.14), the abscissa of convergence of the series for 9(s),  at s = s 0, for 
fixed values of ti and z is determined either by the 

Exter ior  Cond i t ion :  

H(z,  ti, s )J(s)= 1 (4.16) 

or using (4.13), (2.5), and (2.6), by the 

where 

and 

In ter ior  Cond i t ion :  

u(s, ti) =--- zloo(s)/y = 1 

Z~(s) = lim [I(s ,m)] '/m 
m - - )  oo 

(4.17) 

(4.18) 

~ 

y = e - r  (4.19) 

Although the series for ,I,(s) will also diverge under other conditions, either 
(4.16) or (4.17) must be satisfied on the abscissa of convergence. For 
example, on recalling the condition E m >  0 we deduce that 

H(z,  ti, s) > G(z,s) (4.20) 

thus the exterior condition is always met before one realizes the condition 
zK(s) = 1 [which gives G(z,s)= co]. 

The possibility of a phase transition is now evident. If s o - - t ip  is 
determined by the interior condition over a region f~ in (ti, z) or (T, t~) 
space and by the exterior condition for values of ti and z outside a, then 
there will be a nonanalytic change in the thermodynamic behavior across 
the boundary of ~2. This corresponds to a phase transition. (~3-18) Let us 
tentatively suppose such a region f~ exists. 

In the appendix we prove on the basis of (2.3), (2.4), and (4.11), that 
given any 6 > 0, e > 0, and sufficiently large m > M(6, ~), one has the 
bounds 

( l + 8 ) B ( s , m ) > I ( s , m ) > ( 1 - 8 ) B ( s , m )  for s < b - ' - e  (4.21) 
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and 

[K(s)]  m 

where 

+ (1 - a)B(s ,m)  > I ( s ,m)  >[K(s ) ]m+ (1 + 6)B(s ,m)  

for s > b - l + e  (4.22) 

( eb ) me -s(b+c')m 

B(s ,m)  = (2~rm),/2( 1 _ bs) 

Thus we obtain the limiting value 

I~(s)  = be 1-'(b+c') for 

= K(s) = e-SO'Is for 

e - ~(~-  1/b) (4.23) 

s < b  

s > b - l  (4.24) 

Hence if [So( fl, z) - b - i] changes sign within ~2, there will be another phase 
transition. 

The thermodynamic behavior of the system in any subregion A of ~2 in 
which So(/3, z) < b -  1 follows from (4.17) and (4.24) and is given simply by 

iz = (c '+  b)p - E - k ~ T { 1  + ln Ib /2 t (T)]  } (4.25) 

Therefore within A, which we assume to exist, the density of the system 
remains f ixed at 

( ~ P ) - -  (c' + b ) - '  (4.26) 

Thus the p versus p isotherms will contain level sections. Recalling the 
necessary monotonicity of these isotherms (1'7's) and noting that, in princi- 
ple, p can take values both smaller and larger than p6 we may presume 
there will be a corresponding discontinuity in pressure versus density at 
constant temperature. It remains to show that a region A, where the interior 
condition determines s 0, with s o < b - l ,  can exist and that for sufficiently 
low p the density is less than p6 while for p sufficiently great the density 
exceeds p~. 

An alternative expression for the exterior condition, (4.16), obtained 
by using (4.17) to eliminate z from (4.13) in favor of u(•,z), is the 
following: 

Exterior Condition: 

[ K ( s ) ] "  
1 = y ( Id ,  B,S) ~ J(S) m~ (uy) m+l 

=o 

(4,27) 
I ( s , m )  

= [ l = ( s ) ]  m+' 



Continuum Fluids with a Discontinuity in the Pressure 425 

\ " - -  I .] interior I. - -  

. . . % -  u ( Z o , p ,  S o ) . . ' ~  

~ (Zo,/~,s) 

0 I I I 
s ~ s O s 1 S 2 S 

Fig. 3. Sketch i l lus t ra t ing the fact  tha t  if s o satisfies 7(1, fl, So )>  1, then  the exter ior  

cond i t ion  de te rmines  the t h e r m o d y n a m i c s  when  s = s o. Here  u o and  z o are def ined  through 

the relat ions 7 (u  0, fi, So)=-- 1 and  u(z  o, fi, So)=-- u o. As s is decreased,  the exter ior  condi t ion ,  

7 (u  0, fi, s) = 1, is encoun te red  at  s = s o before  the inter ior  condi t ion ,  u(z o, fl, So) = 1, is met  a t  

s = s*. The  inter ior  condi t ion ,  u(z o, fl, So) = l ,  de te rmines  the t h e r m o d y n a m i c s  when  s o lies in 

the in ter ior  region be tween  s I and  s 2 in which  y(1, fl, So) < 1. 

Since [ K ( s ) ]  m exceeds I ( s ,  m)  we infer that  7(u, fi, s) is a strictly monoton ic  
increasing funct ion of u for fixed fi and s. So if 2/(1,/3,So) > 1 for given/3 
and  s o then we have y (u  o, fi, So) ~ 1 for some u 0 < 1 corresponding to say 
z = z o. N o w  it follows f rom (4.11), (4.17), and (4.18) that u is a monoton ic  
decreasing funct ion of s at f ixed/3 and  z. Hence,  as illustrated in Fig. 3, 
when s is decreased f rom ~ with/3 fixed and z - z 0, the condit ion u = u 0 
will be encountered at s -- s o before the condit ion u = 1 is met. Therefore 
the abscissa of convergence, So(fl, z ), will be determined by the exterior 
condit ion whenever 7(1, fl, So) > 1. Conversely So(/3, z) is determined by the 
interior condit ion if 3,(1,/3, So) < 1. 

The next step is to establish that we can choose vm, W m and /~ in 
(2.3)-(2.5) so as to obtain y(1, fi, So) < 1 over a range of pressures and 
temperatures.  Let us consider, for simplicity, the following model:  

Logarithmic Model: 
W m = l ~ + w l n m  (4.28) 

v m = - ~ ln  m (4.29) 

where if" is positive. To satisfy (2.3) and (2.7), i.e., to ensure E m < 0 and 
d m > mc' ,  for all m/>  2, it is sufficient to require 

1~ <�89 w < 2 / ~  (4.30) 

< 2b (4.31) 
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Substituting (4.28) in (4.27) we deduce that one can achieve ~,(1,/?,So) < 1 
(for sufficiently large positive values of/?/~ and/?~ ' )  if and only if the series 

J ( 1 )  = ~] I(so,m)m-flw[100(%)] m (4.32) 
m=2 

converges. The bounds (4.21) and (4.22) on I(s o, m) imply convergence of 
the series J ( 1 )  provided that b does not vanish and that 

o(s o, / ? ) -  /?w + ~ ( b - ' -  so)- �89 for s o < b - '  

--=/~w-1 for s o > b  I (4.33) 

is positive. Conversely, if o (s 0,/?) is negative than S (1) diverges and hence 
y(1,/?, So) likewise exceeds unity and the exterior condition always applies. 

Now, if either w is positive or g > �89 b, it follows from (4.33) that there 
is a region, say ~, of the phase diagram, i.e., the (p, T) plane, in which 
o(s o,/?) is positive and one has s o ~ /?p  < 1/b. Two typical cases illustrat- 
ing the disposition of the region qP are shown in Fig. 4. The figure also 
embodies the fact that for sufficiently large/~ and W with b =~ 0, this region 
must contain a subregion, /~, of the (p, T) plane, corresponding to the 
region A in the (T,/~) plane, within which the interior condition is satisfied. 
Indeed since J ( 1 )  converges throughout ~' the region/~ must expand to fill 

as E and I,V approach infinity. 

P 

o 
__w_ 
V 

P 

So=I/b ...-" 
exterior phase 

/ i / /  

, s "  W o  

I . .  , . ' .  ": . . ' . '  ". �9 ' �9 �9 . '  , . .  / ~ ' .  : : . ; : : . . . . : .  ~ "...': 

-i?.:;) :9@_ 0 
..... 2~ ~consmnt density T 0 

phase 

,compressible cluster phase 
i ~ - - o - = 0  

! so=,/b .->..- 
I exterior phase / / i  

" I ~ / / / / / /  
I ......... >~'" ~ 0 " = 0  

4' ~':.:.: :): ~ ,  :?!?}5 

Tl W/kB ~Constont density q-~ 
phase 

(a) w <  O, ~" >~-b (b) w >0 ,  0 < ~ "  < ~-b 

Fig. 4. Schematic phase diagrams in the (p, T) plane for the logarithmic model for two 
ranges of the parameters w and ~. The constant density region, ~, is a subset of both ~ and ~'. 
As E and W approach infinity, ~ fills ~' and f~ fills all the region o > 0. Three phases are 
possible: the exterior or disordered phase outside ~; the constant density" phase within A; and 
the compressible cluster phase, which is within ~ but outside ~. [Note that the region ~ does not 
represent a phase and that the compressible cluster phase occurs only in case (b).] A sketch of 
the (p, 0) isotherm for case (b) at temperature T~ is presented in Fig. 5. 
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Now note from (4.27) that we have 

OO 

V(1, fl, So) > J(s~ 2 y m + t =  
K(So) m =o 

and hence 

7(1, fi, So) > 1 

(e s~ - 1) 

(e B~-  1) 
(4.34) 

for p =-- sol fi >p+ =-- E I ( c ' -  a) (4.35) 

Thus the exterior condition must determine the thermodynamics whenever 
the pressure exceeds p + .  From (4.27) one also finds 

y(1,/?,So) > y2j(so)K(so)/[ I~(s0)] 2 (4.36) 

Upon substituting the expressions (4.5), (4.7), and (4.24) for J(so), K(so), 
and I~(so) into (4.36) and using the inequality 

e x - l > x  (4.37) 

we conclude 

,/(1, fi, So) >y2(c'  - a)/b2e2So for So < b -1  (4.38) 

This in turn implies 

3/(1, fl, s 0 ) > l  for p = S o / f i <  p =min{1 / f i b ,  y 2 ( c ' - a ) / f i b 2 e  2} 

(4.39) 

and, consequently, at T ~ 0, the exterior condition must also dictate the 
thermodynamics whenever the pressure falls below p _ .  Therefore the level 
sections of the O versus p isotherms (for T r  0) associated with ~ (or A) 
cannot extend to either zero or infinite pressures. Owing to the monotonic- 
ity of these isotherms (1'7'8) the density must exceed Pa for sufficiently large 
p and must be less than Pa when p is small enough. Thus a bounded 
discontinuity, Ap, in the (p, p) isotherm must exist. 

In the special model with b = 0 one has I~(so) -- 0 and consequently 
by (4.17) the interior condition can never be satisfied, irrespective of the 
values of E, W m, and vm. Thus a discontinuity in the (p, p) isotherms 
cannot occur. This substantiates the comment made in Section 2, namely, 
that to permit condensation it is necessary for the particles within the large 
clusters to have sufficient internal freedom. 

5. PHASE D I A G R A M S  

By an appropriate choice of many-body interaction potentials we have 
constructed a model with discontinuous pressure versus density isotherms. 
We have also established that three distinct phases are possible within the 
model, namely: 
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The exterior or disordered phase, arising when 

y(1, fl, So) > 1 

The constant density phase with to ~ toA, occurring when 

y(1, fl, s0)<  1 and s 0 < b  - l  

The compressible cluster phase, which occurs when 

3'(1, fi, s0)<  1 with s 0 > b - I  

Let us investigate the qualitative features of the phase diagram and give a 
physical interpretation of the existence of pressure discontinuities. 

Two typical phase diagrams are illustrated, somewhat schematically, in 
Fig. 4. To justify their form note that, in addition to the pressure conditions 
(4.35) and (4.39), regions of temperature where the exterior condition must 
apply can also be found. Thus the condition fiE < 1 implies, via (4.19), 
y > e-~. The further condition 

s o < min{b 1 , (c ' -  a)/b2e 4} (5.1) 

then implies, through (4.39), that 7(1, fl, So) exceeds unity. Hence the 
exterior condition must also apply when 

T > T+ = - ( E / k B ) m a x { 1 , b / ( c ' -  a),b2e4//(e'- a) 2} (5.2) 

which supplements the previous condition (4.35), namely, p > p +  = 
ff~/(c' - a). Consequently neither the constant density phase nor the com- 
pressible cluster phase can exist at temperatures exceeding T+ or at 
pressures exceeding p +.  The region ~ in the (p, T) plane, corresponding to 
f~ in the (T, ~) plane, encompasses both cluster phases, and must likewise 
be bounded, as illustrated in Fig. 4. In the previous section we deduced from 
(4.39) that the exterior condition holds at fixed T ~ 0 if the pressure is 
sufficiently small. Hence the region ~ cannot extend to the p = 0 axis, 
except, possibly, at T = 0. 

To analyze further details of the phase diagram it is helpful to 
distinguish the three cases 

(i) w < O, ~ < �89 b 

(ii) w < O, ~ >�89 (5.3) 

(iii) w > 0 

In the first case the convergence condition (4.33) implies that a(s0, p)  is 
always negative and so only the disordered, exterior phase can exist. 

At larger values of ~, such that condition (ii) is satisfied, a(s o, p) does 
take positive values within the sector T of the (p, T) plane, as illustrated in 
Fig. 4a. Note that, by definition, T does not overlap the region where 
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s o > b -1 holds when w < 0; nor does it extend below temperatures less 

than 

T_ =- 1 / k B B  + = w / k B (  �89 - g / b )  (5.4) 

(see Fig. 4a). Hence the compressible cluster phase cannot exist in case (ii) 
and the constant density phase, which must exist if /3+/~ and/3  + if" are 
sufficiently large, cannot extend to temperatures below T . Physically, 
when w is negative, as here, the surface energy term, W m, favors the break 
up of large clusters into smaller ones. When T > T _ ,  however, this 
tendency can be overcome provided the average density is precisely equal to 
O~ because the cost in entropy entailed in breaking large clusters into 
smaller ones then becomes prohibitive owing to the v m dependence in the 
cluster condition C. 

The third case, w positive, is more complicated. Note, first, that w > 0 
implies W m > 0; it then follows from the definition (4.27) that y(1,/3, So) at 
fixed s o v ~ 0 is a monotonic decreasing function of/3 which approaches zero 
w h e n / 3 ~  ~ .  Thus we have 7(1, ~3,So) < 1 for sufficiently small T (at fixed 
s o v ~ 0) and consequently both the compressible cluster phase and the 
constant density phase must exist. Moreover, any line through the origin in 
the (p, T) plane of nonzero slope (and hence corresponding to fixed s o v ~ 0) 
must intersect the boundary of ~ once and only once at a point away from 
the origin; this feature is embodied in Fig. 4b. In the low-temperature limit, 
T->0,  at fixed pressure, we find from (4.11) and (4.27) the asymptotic 
result 

~ 

y(1, /3, s0) ~ e'~ e -~E + e -pw:]  (5.5) 

The boundary of ~, which corresponds to ~,(1,/3,So) = 1, must thus be 
almost temperature independent at low temperatures and must intersect the 
T = 0 axis at a pressure 

p = p  = min{/~, W 2 ) / ( c '  - a) (5.6) 

The region ~ must, of course, also be confined to the domain o(s o,/3) > 0. 
We have now accounted for the major features of the possible phase 

diagrams of the logarithmic model. Figure 5 displays a variety of phase 
transitions that may be observed on an isotherm such as T = T~ in the 
phase diagram of Fig. 4b. At intermediate pressures (i.e., P2 < P < P3 in Fig. 
5) the compressible cluster phase occurs and the particles in a macroscopic 
cluster tend to be sufficiently close together, on average, that the lower 
bound, Oa, on the density of particles within any macroscopic cluster is 
statistically unimportant. Indeed, the thermodynamics of the system in the 
condensed state, which according to (4.17) and (4.24) is governed simply by 

tz = pc' - if7 + k ~ T l n [  p X ( T ) / k s T  ] (5.7) 
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Fig. 5. Sketch of a pressure-density isotherm showing a discontinuity @,  which may, for 
example, arise in model (b) of Fig. 4 at temperatures like T I. The precise nature of the 
isotherm in the transition regions nearpl  andp3 depends on the value of o at these points (see 
Section 6): here the condition �89 < o < 1 has been assumed valid at both points. 

is quite independent of OA. By (5.7) the "natural" density, of particles 
within the large clusters is 

( op ) r = #/(k~ r + p~') (5.S) Or(P, T)  = \ 

At lower pressures such that s o < b -  l (which corresponds to p </)2 in 
Fig. 5) Or falls below p~. Since 0a is the minimum allowable density of 
particles within a macroscopic cluster, the density of the system remains 
stuck at 0~ until the pressure is lowered further (to p < Pt in Fig. 5) so that 
the macroscopic cluster or "condensed" state breaks up into a disordered 
gas of smaller clusters. This accounts for the discontinuity in the pressure at 
O = O~. Once macroscopically large clusters have broken up, the thermody- 
namics of the system is fully determined by the exterior condition which 
involves only finite clusters. At the opposite extreme of high pressures 
(P > P3 in Fig. 5) the macroscopic clusters are crushed, forming many flags, 
and the thermodynamics is again dictated by the exterior condition. 
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6. ISOTHERM SHAPES IN THE TRANSITION REGION 

In  order  to investigate the possible nature  of the p ressure -dens i ty  
isotherms in the transit ion region where macroscopic  clusters start  to form, 
i.e., when u ~  1 - ,  note  f rom the definit ion (4.17) of u(s, ]3) that  

tx = - ff~ + k B T l n ( u ( s o ,  ]3 )X(T) / I~ ( so )  ) (6.1) 

so that  the density is given by  

O , = f i  _~So _ u  ff~So _ l ( ~ u ) + m i n { o z x l , p r t }  (6.2) 

"Thus we need to unders tand  the var ia t ion of u(s o, ]3): for u =/= 1, this is 
ob ta ined  f rom the exterior condit ion 3,(u, fi, s o) = 1. In  the logari thmic 
model  the singular behavior  of "~(u, fl, So) as u - - ~ l -  arises f rom the 
contr ibut ion of the series 

J ( u )  = ~ I(so,m)m-/~'~[ Io~(So)]U m+' (6.3) 
m = 2  

To approx imate  the singular par t  of J ( u )  differentiate this series j times 
with respect  to u to fo rm a new series J ( J ) ( u )  such that  • ( J ) (1 )  is 
divergent.  Then  the dominan t  contr ibut ion to J ~ J )  as u ~ 1 - comes f rom 
the terms of high order. A valid asympto t ic  expression for S ( J ) ( u )  is 
obta ined  by  replacing the series by an integral which, with the help of 
(4.21) and  (4.22), can  be evaluated for s o v ~ 1 /b  to yield 

J ( J ) ( u ) ~ a ( f l ,  So)(1 - u) ~176 as u ~ l  - (6.4) 

where A( f l ,  So) is an analyt ic  funct ion of fi and  s o, except  at s o = 1/b,  and 
j > o(s  0, ]3). The  exponent  o(s o, ]3) is given by  (4.33) and  for simplicity we 
have  assumed it is nonintegral .  The  margina l  case in which O(So, ]3) is 
integral yields logari thmic factors. U p o n  in t eg ra t ing j  times with respect to 
u and  substituting in (4.27) we obta in  

V(u, ]3 , s0 )~  Bo(u, fl, So) + B,(]3,So)(1 - u) ~176 (6.5) 

as u @  1 - ,  where B0(u, /3,So) and Bl(f l ,  So) are analytic funct ions of u, fl, 
and  s o, except  if So = b - i or if o(s  o, ]3) is integral, which cases we exclude. 

Fol lowing the approach  of Ref. 9 we use this result to solve for 
U(So, ]3) with s o close to a transit ion point,  s t, such as s 1 or s 2 in Fig. 3, 
where u = 1 is just  at tained.  Provided s t v a b -  1 and  

~ B ~  u= 
v ~0  when o(s o , ] 3 ) >  1 (6.6) 

Ou 1 
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one f inds 

1 - u ~  CoAs + Cll/Xsl ~+1 as As = st - s0--->0 (6.7) 

where C o a n d  C 1 are i ndependen t  of So, bu t  may  depend  on s t and  fl, and  

C 0 = 0  for 1 > o > 0  (6.8) 

while the exponen t  is given by  

~-= 1 / o  t -  1 for 1 > a  t > O  

= m i n ( 1 , o , - 1 }  for o t >  1 (6.9) 

where o t -- o(st ,  f l )  is aga in  supposed  nonintegral .  By (4.27) the der ivat ive 
of y(u ,  fl, So) with respect  to u is a lways  strictly posit ive:  it follows f rom 

(6.5) that  (6.6) mus t  a lways  hold.  Put t ing Pt -- s t / f l  and  assuming s t v ~ l i b  
we find f rom (6.7) and  (6.2) that  

p ~ p o + m a x { p A , O r  + D I p - p , ]  ~ as P ~ P t  (6.10) 

where P0 and  D are re la ted  to C O and  C 1 and  

p 0 = 0  for 1 > o > 0  (6.11) 

and  Pr(P, T )  is given in (5.8). 
The  possible  shapes of the pressure i sotherm in the t ransi t ion region 

fol lowing f rom this analysis  are  sketched in Fig. 6. They  are  bas ica l ly  the 
same as found  in the or iginal  lat t ice gas model .  ~9) However ,  in the present  

P 

P2 

P, 

/ / / #  
I [ r I 
I I 
l l I ' 
I I t 

I t I I 

' ' 1 + 
1 1 1 , 
I I ) //"/+ 

(a) (b) (c) (d) 

T 
A p  

Fig. 6. Schematic pressure-density isotherms illustrating discontinuities which can occur in 
the logarithmic model with w < 0 and ~ > �89 b. The various types of behavior as p approaches 
the lower transition point, Pl, correspond to (a) 0 < o < �89 (b) �89 < a < 1, (c) 1 < a < 2, and 
(d) o > 2, where o(pl, T) is given by (4.32) with s o = tiP1- Note the horizontal two-phase 
regions in (c) and (d). Near the upper transition pressure, P2, the shape of the isotherm is 
similarly determined by o(p2, T): here the relation 0 <  o(p2, T)< �89 has been assumed 
although other values of o(p2, T), giving other shapes, are possible. 
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model the exponent Or, given by (4.33) with s o = st, and thence the 
exponent ~- depend both on the transition temperature and on the transition 
pressure. Hence, in contrast to the lattice gas model, for which the analo- 
gous exponents are independent of pressure, the shape of a given isotherm 
is not necessarily similar in the two different transition regions on either 
side of the discontinuity (such as P ~ P l -  and P ~ P 3  + in Fig. 5 or 
P-->Pl - a n d p ~ p 2  + in Fig. 6). As shown in Fig. 6, the pressure isotherm 
remains constant over a finite density interval when o > 1. Thus, as in the 
lattice gas model, it is possible for a single isotherm to exhibit both a 
discontinuity in pressure and a discontinuity in density. 

7. MODELS DISPLAYING OTHER THERMODYNAMIC ANOMALIES 

In a normal first-order, liquid-to-gas transition there is a level section 
in the pressure-versus-density isotherm and in the isobar of temperature 
versus the entropy per particle, S. Now that we have constructed a model 
with a discontinuity in the (p, 0) isotherm it seems natural to ask if the 
complementary ( T , S )  isobar can be discontinuous. In any classical one- 
dimensional system with velocity-independent potentials the total entropy 
per particle 

can be split, uniquely up to a constant term, into a kinetic part 

Skin(r) = dkBr lnX(T) - -  k B [ � 8 9  (7.2) 

and the configurational part 

S c o n ( T , ~ ) = X - X k i n  = -  e-  kB[ �89 -- lnX(T)l (7.3) 

[The chemical potential, b~(P, T) can likewise be decomposed into a sum of 
/~kin(T) and /~con(P, T).] Both Ski n and Scon must be monotonic increasing 
functions of T at constant p.(1'7'8) In fact, it follows from (7.2) that Ski n is a 
strictly monotonic function of the temperature and hence neither S n o r  Ski n 
can be independent of T at constant p. Thus the remaining question is 
whether a discontinuity in the T versus Scon isobar can exist. We need not 
search far for an answer! By (4.25) and (7.3) the configurational entropy in 
the constant density phase of the basic model remains fixed at 

S c o  n = S A ~ k e In b (7.4) 

Furthermore, as shown in Section 5, the constant density phase in the 
logarithmic model for fixed p 4= 0 cannot extend to zero or infinite tempera- 
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tures. Hence for any p =/= 0, such that the constant density phase occurs 
over a range of temperatures, the T versus Sco n isobar must be discontinu- 
ous at SA. In the one-dimensional lattice gas model with a pressure 
discontinuity (9) the constant density phase also has constant configura- 
tional entropy, but, at fixed p, this phase always extends down to zero 
temperature. Thus, in the lattice gas model the (T, Scon) isobars are not 
really "discontinuous" in the strict sense. 

Since the basic model displays a phase corresponding both to discon- 
tinuous (p, 0) isotherms and to discontinuous (T, Scon) isobars, it is now 
natural to ask if these two unphysical anomalies can be obtained sepa- 
rately. The answer is "Yes" but an extension of the basic model is required. 
Thus consider a class of extended models in which the clusters are defined 
so that the minimum spacing allowed between particles in a cluster depends 
on the length of the flag immediately to the left of the cluster. More 
specifically an "n-string" of particles (as defined in Section 4), with sequen- 
tially labeled coordinates ro,r ~ . . . . .  r,_ l, and with adjacent particles at 
r_ l, r, is an n-cluster for n >/3 if both the condition 

(~,: I ~ - ~ - l l  t> Y ( r 0 - r - 1 )  for j =  1,2 . . . . .  n -  1 (7.5) 

and the generalized cluster condition 

1~0: ] r . - 1 - r 0 [ = l .  ~< d~_i(r 0 - r _  0 - - - - ( n -  1 ) [ b + ~ ( r  o - r _ l )  ] (7.6) 

are satisfied. The function, Y(r), which sets the minimum spacing, may, for 
our present purposes, be chosen as 

Y ( r ) = 3 ~ a - r  for r < 3 a  

= 4 a - r  for r ~ 3 a  (7.7) 

so that it has a discontinuity at r = 3 a. For simplicity we suppose that the 

length c', which serves to define the flags, satisfies 

c' = 2a (7.8) 

Finally, an (m + 1) cluster is now assigned a negative energy 

E m = W m - (m + 1)I/~ - V_ (r o - r_021 for r < 3 a  

= W m - ( m +  1 ) I f f ~ - V + ( r o - r _ l )  2] for r ~ 3 a  (7.9) 

which depends quadratically on the length of the left flag with amplitudes 
V+ and V_.  

This extended model has a less-than-pleasing left-right asymmetry 
which could, however, be removed at the cost of further complexity in the 
exact solution which still follows by application of the methods of Section 
4. For suitable choices of the parameter values, including the restriction 
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9 V+ > 6 V_ > 8 V+,  the chemical potential of the extended model over a 
limited range of p and T is found to be 

t~(P,T) = (b + 33a)p-p2/4V_ - E - k s T { 1  + ln[b/~(T)]} 

for p < p t  

= (b + 4a)p -pZ/av+ - E - k B T { 1  + lnIb/X(T)l } 

for p > p *  (7.10) 

where the special pressure is given by 

p*=aV+ V / ( V  - V + )  (7.11) 

Note that the chemical potential is continuous through p = p t  as required 
thermodynamically. It is now evident that the configurational entropy, 
S . . . .  is independent of the temperature over a range of fixed pressures 
while the density varies with pressure over the same range. Furthermore, 
over a range of temperatures, the model displays a first-order phase 
transition at the constant pressure, p = pt, which is anomalous in that the 
configurational entropy is fixed independent of both density and tempera- 
ture. (This is a stronger but similar anomaly to that observed in a 
ferromagnet where, as a result of symmetry under reversal of the magnetic 
field, the magnetic entropy, is independent of the magnetization M through 
the two-phase (or domain) region at fixed H = 0; in that case, however, the 
magnetic entropy does depend on T.) 

A second extension of the basic model is to allow the distance b in 
(7.6) to depend on the flag length, r 0 - r_ 1. A particularly simple situation 
is obtained by choosing b = /~( r  0 - r l) so that the maximum length, d,_ l, 
of an n-cluster is actually independent of (r 0 - r _  0. One can then find 
parameters so that the density of the system is, over some region, indepen- 
dent of pressure while the configurational entropy varies with temperature. 
Associated with this can be a two-phase region with, as normal, T constant 
over a range of (configurational) entropy (i.e., S discontinuous in T) but 
with the density fixed with respect to variations of both entropy and 
pressure. It might be mentioned here that the convexity of the thermody- 
namic potentials, required thermodynamically or implied by statistical 
mechanics, yields a series of restrictions on the types of thermodynamic 
discontinuities that can conceivably be observed. Some of these restrictions 
are by no means obvious: they will be described in detail elsewhere. (18) 

In the previous study (15) of the cluster interaction models it was 
demonstrated that a locus, say S ( p ,  T), of normal first-order transitions in 
the (p, T) plane could exhibit smooth extrema both in pressure, corre- 
sponding to maxibaric or minibarie points, and in temperature, correspond- 
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ing to maxithermal or minithermalpoints. (Of course some examples of these 
phenomena are known in real systems.) In the models with both the 
distance b and the minimum cluster spacing depending on the flag length, 
the analogous maxentropic, minentropic, maxichoric, and minichoric points 
can be exhibited by a locus, J~ (0 ,  Soon), in the (0, Scon) plane of anomalous 
transitions in which p and T are discontinuous at fixed 0 and Sco n- 

Finally, on extending the model a step further by introducing the first 
cluster spacing, (r 1 - r0 ) ,  as a second variable in the minimum spacing 
function, ~, one is in a position to produce models which display essentially 
all possible types of discontinuity conceivable in the thermodynamics of a 
single-component fluid. (is) Explicitly we then have exactly soluble models 
exhibiting any one of the following features over a region of the (p, T) 
plane: 

(i) The configurational part of the chemical potential, /Xco n, is linear 
in both p and in T; 

(ii) /~r is linear in p but nonlinear in T; 
(iii) /~con is linear in T but nonlinear in p; 
(iv) /~r has the form ~a(P) + IZb(T), SO that (02~r =-- O, with 

both/~a and/~b nonlinear. 
In summary, any discontinuous "phase transitions," however peculiar 

or unobservable in reality, can be found in a suitable one-dimensional, 
continuum cluster-interaction model provided only that it is not forbidden 
by thermodynamic convexity. (18~ 
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APPENDIX: BOUNDS FOR I(s,m) 

We want to study the integral 

I(s,  m) = f dmdle-"[l  - me' 1 m-11( m __ 1)! (A. 1) 
mc" 

for s > 0, when m becomes large. The upper limit of integration is given by 

d m = m(b  + c') + v,~ (A.2) 

where b and c' are positive and independent of m while (Vm)2 /m~O as 
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m ~ oe. Now by change of variable we have 

l ( s , m ) = ( m b ) ' - ' e - s d ~  d y e - ' Y [ l + ( v ~ + y ) / m b l  m-T (A.3) 
( m -  1)! mb-v~ 

To obtain an upper bound for the integral here, consider the inequality 

1 + x < e x ( A . 4 )  

On putting x = (v m + y ) / m b  this yields 

[1 + + y)/mb] < e (A.S) 

and so one has 

- (mb)m e x p [ - s d  m + (m - 1)Vm/mb ] (A.6) 
I ( s ,m)  < rn] [ bs - (m - 1)/rn] 

for all s < (m - 1)/mb. A lower bound is found by noting 

1 + x > e x -  x2 ( A . 7 )  

for sufficiently small x, in particular for Ix] <�89 On recalling the condition 
v ~ / m ~ O  as m-+ 0% it follows that for given 6' > 0 a n d y  o < 0, there exists 
an Mo(Yo,6') such that for m > m0(yo,8') and }y} < }Y0}, 

[1 + (v m + y ) / m b ]  m-'  >(1 - 8')e (~'+y)/b (A.8) 

Substituting this in (A.3) and integrating from Y0 to zero we deduce that 

(1 - 6')(mb) '~ _~d~+~/a[ 1 _ e_YO(~_~/b) ] (A.9) 
l ( s ,m)  > m!(1 - bs) e 

for all m > Mo(yo,~'), for all s < l / b .  From Stirling's formula (17) we have 

(1 + 8')(2~rm)l/Z(rn/e)m> m! >(2wm)l /2 (m/e)  " (A.10) 

for m >> 1/8 ' .  Hence given any 8 > 0 and e > 0 we can choose Y0 and 8' so 
that for sufficiently large m > M(8,c) the inequalities (A.6), (A.9), and 
(A. 10) imply 

(1 + 8)B(s ,m)  > I ( s ,m)  >(1 - 8)B(s ,m)  (A.I t)  

for all s < 1/b  - E, where 

(eb) ~e-'(b+~')m e~C I/b-~) (A. 12) 
B(s ,m)  = (2~rm),/2( 1 _ bs) 

For s > 1/b, consider the integral 

I*(s, r n ) = s  - m c ' ] ' ~ - ' l ( m  - 1)! (1.13) 



438 Milton and Fisher 

which is easily related to l(s, m) via 

I(s,m) + It(s,m) = [ K ( s )  ] m z  e-mC'S/s m (A.14) 

Proceeding as in (A.3)-(A.12) we find that given any 6 > 0 and e > 0 there 
is an M'(6,  e) such that for m > M'(6, c) we have 

- ( 1  + 6)B(s,m) > It(s,m) > - ( 1  - 6)B(s, rn) (A.15) 

and hence 

[K(s ) lm+(1- -6 )B(s ,m)>I ( s ,m)>IK(s ) lm+( l+6)B(s ,m)  (A. I6) 

for all s > 1/b + E. This proves the results (4.21) and (4.22) used in the text. 
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